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a b s t r a c t

Frame structures with viscoelastic dampers mounted on them are considered in this paper.

Viscoelastic (VE) dampers are modelled using two, three-parameter, fractional rheological

models. The structures are treated as elastic linear systems. The equation of motion of the

whole system (structure with dampers) is written in terms of state-space variables. The

state space formulation is new and does not require matrices with huge dimensions. The

paper is devoted to determine the dynamic properties of the considered structures.

The nonlinear eigenvalue problem is formulated from which the dynamic parameters of

the system can be determined. The continuation method is used to solve the nonlinear

eigenvalue problem. Moreover, results of typical calculations are presented.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Viscoelastic (VE) dampers have often been used in controlling the vibrations of aircrafts, aerospace and machine
structures. In civil engineering VE dampers are successfully applied to reduce any excessive vibrations of buildings caused
by winds and earthquakes. It was found that incorporation of VE dampers in a structure leads to significant reduction of
unwanted vibrations [1]. A number of applications of VE dampers in civil engineering are listed in [2]. The VE dampers
could be divided broadly into fluid and solid VE dampers. Silicone oil is used to build the fluid dampers while the solid
dampers are made of copolymers or glassy substances. Good understanding of the dynamical behaviour of dampers is
required for the analysis of structures supplemented with VE dampers. The dampers’ behaviour depends mainly on the
rheological properties of the VE material the dampers are made of and some of their geometric parameters.

In the past, several rheological models were proposed to describe the dynamic behaviour of VE materials and dampers.
Both the classical and so-called fractional-derivative models of dampers and VE materials are available. Descriptions of
these models are given in [3–11].

In a classic approach, mechanical models consisting of springs and dashpots are used to describe the rheological
properties of VE dampers [5,11–17]. A good description of the VE dampers requires mechanical models consisting of a set
of appropriately connected springs and dashpots. In this approach, the dynamic behaviour of a single damper is described
by a set of differential equations (see [5,11,12]), which considerably complicates the dynamic analysis of structures with
dampers because the large set of equations of motion must be solved.

The rheological properties of VE dampers are also described using the fractional calculus and the fractional mechanical
models. This approach has received considerable attention and has been used in modelling the rheological behaviour of VE
materials [4,18,19] and dampers [6,9]. The fractional models have an ability to correctly describe the behaviour of VE
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materials and dampers using a small number of model parameters. A single equation is enough to describe the VE damper
dynamics, which is an important advantage of the discussed models. However, in this case, the VE damper equation of
motion is the fractional differential equation.

The dynamic analysis of frame or building structures with dampers is presented in many papers [11,13–17,20–25] where
the Maxwell [13,14,16,17] or the Kelvin model [14,15,22,23] are used to describe the dampers’ dynamic behaviour. In the
papers [20,24], a three-parameter fractional-derivative rheological model is used to model the dampers’ behaviour. Moreover,
in the paper [25] the rational polynomial approximation modelling is used for analysis of structures with VE dampers.

The methods of determination of dynamic properties of systems with damping described with the help of the fractional
calculus are presented in the papers [4,19,20,25–29]. However, according to the presented formulation, a substantial linear
eigenvalue problem must be solved.

The fractional derivative model of damping was applied also to describe the dynamic behaviour of viscoelastic beams
[30–32]. The finite element formulation of fractional viscoelastic constitutive equations is presented in [33]. An interesting
discussion of damping mechanics and models used in structural dynamics is presented in [34].

In this paper, planar frame structures with the VE dampers mounted on them are considered. The VE dampers are
modelled using the fractional rheological model. Two three-parameter, fractional rheological models, i.e., the Kelvin model
and the Maxwell model, are considered. The structures are treated as linear elastic systems. The equations of motion of the
whole system (the structure with dampers) are written in terms of both physical and state-space variables. The proposed
approach in the state space formulation is new. It is the main advantage of the proposed formulation, where matrices with
huge dimensions are not required. The resulting matrix equation of motion is a fractional differential equation.

The aim of the paper is to determine the dynamic properties of the considered structures. The nonlinear eigenvalue
problem is formulated from which the dynamic parameters of the system can be determined. The continuation method is
used to solve the above-mentioned nonlinear eigenvalue problem. In contrast to the method presented previously (see
[4,19,20,26,28,29]), the dimension of the eigenvalue problem arising here is much smaller.

The calculation results will also be presented and briefly discussed. The influence of the key parameter which describes
the order of the fractional derivative on the dynamic parameters of frames with VE dampers, is also shown.

The paper is organized as follows: In Section 2 equations of motion of frame with VE dampers are derived using both the
physical and state-space variables. In Section 3, the nonlinear eigenvalue problem together with the continuation method
use to find the solution of the eigenvalue problem is presented. The definition of modal parameters of frame with VE
dampers is given in Section 4. In Section 5, the frequency response functions of considered structures are derived. Results
of sample calculation are presented in Section 6. Finally, some concluding remarks are stated in Section 7.

2. The equations of motion for frame with VE dampers

2.1. The rheological models of dampers

In this paper, two fractional rheological models, i.e., the fractional Kelvin model and the fractional Maxwell model (see
Fig. 1), are used to describe the dynamic behaviour of VE dampers. The considered models of a typical damper, i, have three
parameters: stiffness ki, damping factor ci, and fractional parameter ai (0oair1).

The equation of motion for the Kelvin model (see Fig. 1a) could be written in the form:

ui ¼ kixiþciD
ai
t xi, (1)

where ui is the damper force and xi is the relative damper displacement. Moreover, Dai
t ð�Þ denotes the Riemann–Liouville

fractional derivative of the order ai with respect to time, t. The Riemann–Liouville fractional derivative is defined as

DaxðtÞ ¼
1

Cð1�aÞ
d

dt

Z t

0

xðtÞ
ðt�tÞa

dt, (2)

where C is the gamma function. For a precise definition of the Riemann–Liouville fractional derivative, Podlubny [35] may
be consulted.

The equations of motion for the Maxwell model could be written using the so-called relative internal variable vi

(compare Fig. 1b). The above-mentioned equations of motion for damper are as follows:

ui ¼ ciD
ai
t ðxi�viÞ, ui ¼ kivi: (3)
ki

vi xi

ui

ki

ci, �i ci, �i

xi

ui

Fig. 1. Rheological models of damper: (a) fractional Kelvin–Voigt model; (b) fractional Maxwell model.
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A damper of which the behaviour is described by the Kelvin model or the Maxwell model will be shortly referred to as
the Kelvin damper or the Maxwell damper, respectively.

More information concerning the fractional rheological models can be found in [6,29]. The equation of motion of the
classical Kelvin and Maxwell models could be obtained after introducing ai ¼ 1 into Eqs. (1) and (3).

2.2. The equations of motion of structures expressed in physical coordinates

The frame with VE dampers is treated as the elastic linear system and their model could be the shear frame shown in
Fig. 2a. The masses of the system are lumped at the level of storeys. The frame can be also modelled as a structure with
flexible beams. In this case we assume that beams and columns are axially inextensible. Moreover, the static condensation
is used to eliminate the rotational nodal parameters from the equations of motion. Finally, the equation of motion of such a
structure can be written as follows:

Ms €qsðtÞþCs _qsðtÞþKsqsðtÞ ¼ sðtÞþpðtÞ, (4)

where the symbols Ms, Cs and Ks denote the mass, damping and stiffness (n� n) matrices, respectively. Moreover,
qsðtÞ ¼ colðqs,1,:::,qs,j,:::,qs,nÞ and pðtÞ ¼ colðp1,:::,pj,:::,pnÞ denote the vector of displacements of the structure and the vector of
excitation forces, respectively. The sðtÞ ¼ colðs1,s2,:::,snÞ vector is the (n� 1) vector of interaction forces between the frame
and dampers (compare Fig. 2b).

First of all, the structure with one damper, denoted as the damper number i, which is mounted between two successive
storeys j and j+1 (shown in Fig. 2a), is considered. If the Kelvin damper is considered, the force interaction vector sðtÞ could
be written as follows:

sðtÞ � siðtÞ ¼ colð0,. . .,sj ¼ ui,sjþ1 ¼�ui,. . .,0Þ ¼ eiuiðtÞ, (5)

where ei ¼ colð0,:::,ej ¼ 1,ejþ1 ¼�1,:::,0Þ is the ith damper allocation vector of dimension ðn� 1Þ, uiðtÞ is the damper force
given in (1). It is assumed the brace systems used to connect the dampers with the successive storeys are rigid.

Taking into account that the relative damper displacement, written in terms of structure displacements, is

xiðtÞ ¼ qs,jþ1ðtÞ�qs,jðtÞ ¼�eT
i qsðtÞ (6)
n

qs,1

1

qs,j 

j

kici

qs,j+1 

p1

qs,n-1

qs,n

pj

pj+1

pn-1

pn

damper m

j+1

n-1

damper 1

damper i

s1

sj

sj+1

p1

sn-1

sn

pj

pj+1

pn-1

pn

u1

ui

ui

um

um

Fig. 2. Diagram of a frame with VE dampers: (a) a frame with dampers; (b) explanation of elements of the s vector; (c) a frame with dampers’ forces.
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the damper force and the vector of interactive forces could be written as follows:

uiðtÞ ¼ �kie
T
i qsðtÞ�cie

T
i Dai

t qsðtÞ, (7)

siðtÞ ¼�eikie
T
i qsðtÞ�eicie

T
i Dai

t qsðtÞ: (8)

For a structure with m dampers, the vector of interactive forces is given by:

sðtÞ ¼
Xm

i ¼ 1

siðtÞ ¼�
Xm

i ¼ 1

eikie
T
i qsðtÞ�

Xm

i ¼ 1

eicie
T
i Dai

t qsðtÞ, (9)

and the equation of motion (4) could be rewritten in the form:

MsD
2
t qsðtÞþCsD

1
t qsðtÞþ

Xm

i ¼ 1

eicie
T
i Dai

t qsðtÞþ Ksþ
Xm

i ¼ 1

eikie
T
i

 !
qsðtÞ ¼ pðtÞ; (10)

where, in order to be consistent with the notation, a symbol such as D1
t ð�Þ is introduced to denote the first derivative with

respect to time.
Eq. (10) is the matrix fractional differential equation which describes the dynamic behaviour of the considered frame

with the Kelvin dampers. In this approach each damper can have its own values of parameters, different from others.
Eq. (10) is much simplified when all the fractional parameters are equal, i.e., ai ¼ a¼ const: (Appendix A).

Proceeding to considering the structure with the Maxwell dampers, Eq. (3) is used to describe the Maxwell
damper behaviour. The vector of interactive forces sðtÞ is treated as a sum of two vectors, i.e., sðtÞ ¼ s1ðtÞþs2ðtÞ. The s1ðtÞ

vector contains interactive forces which are reactions of the elastic part of the Maxwell dampers to the frame,
while the s2ðtÞ vector contains the interactive forces which are reactions of the dashpot part of the dampers. It is assumed
that the dashpot part of the Maxwell model is jointed with the upper storey while the elastic part is jointed with the
lower storey. Moreover, the brace stiffness could be taken into account in the stiffness parameter of the Maxwell
model.

If a structure with only one damper, denoted as the damper number i, mounted between two successive storeys j and
j+1 is considered (see Fig. 2), then the vectors s1ðtÞ and s2ðtÞ could be written in the following form:

s1ðtÞ � sðiÞ1 ðtÞ ¼ colð0,. . .,sj ¼ ui,. . .,0Þ ¼ ~e iuiðtÞ, (11)

s2ðtÞ � sðiÞ2 ðtÞ ¼ colð0,. . .,sjþ1 ¼�ui,. . .,0Þ ¼ êiuiðtÞ (12)

where
~e i ¼ colð0,. . ., ~ej ¼ 1, ~ejþ1 ¼ 0,. . .,0Þ, êi ¼ colð0,. . .,êj ¼ 0,êjþ1 ¼�1,. . .,0Þ:
Taking into account that qs,jðtÞÞ ¼ ~eT

i qsðtÞ and qs,jþ1ðtÞ ¼�êT
i qsðtÞ, the damping force uiðtÞ of the Maxwell damper could

be shown in two equivalent forms:

uiðtÞ ¼ kiðviðtÞ�qs,jðtÞÞ ¼ kiviðtÞ�ki ~e
T
i qsðtÞ, (13)

uiðtÞ ¼ ciðD
ai
t qs,jþ1ðtÞ�Dai

t viðtÞÞ ¼�ciD
ai
t viðtÞ�ciê

T
i Dai

t qsðtÞ, (14)

and the interaction force vectors sðiÞ1 ðtÞ and sðiÞ2 ðtÞ are given by

sðiÞ1 ðtÞ ¼ ~e ikiviðtÞ� ~e iki ~e
T
i qsðtÞ ¼ ~e ikih

T
i qrðtÞ� ~e iki ~e

T
i qsðtÞ, (15)

sðiÞ2 ðtÞ ¼ �êiciD
ai
t viðtÞ�êiciê

T
i Dai

t qsðtÞ ¼�êicih
T
i Dai

t qrðtÞ�êiciê
T
i Dai

t qsðtÞ, (16)

where the vector of internal variables qrðtÞ ¼ colðv1ðtÞ,:::,viðtÞ,:::,vmðtÞÞ and the vector hi ¼ colð0,:::,hi ¼ 1,:::,0Þ have the
dimension (m� 1).

When m dampers are present in the frame then the interaction force vectors are:

s1ðtÞ ¼
Xm
i ¼ 1

~e ikih
T
i qrðtÞ�

Xm

i ¼ 1

~e iki ~e
T
i qsðtÞ, (17)

s2ðtÞ ¼ �
Xm
i ¼ 1

êicih
T
i Dai

t qrðtÞ�
Xm

i ¼ 1

êiciê
T
i Dai

t qsðtÞ: (18)

The dimensions of matrices Kd
sr and Kd

ss are (n�m) and (n� n), respectively.
Taking into account that sðtÞ ¼ s1ðtÞþs2ðtÞ and introducing Eqs. (17) and (18) into (4) we obtain the following equation

of motion for frame with the Maxwell dampers

MsD
2
t qsðtÞþCsD

1
t qsðtÞþ

Xm

i ¼ 1

êiciê
T
i Dai

t qsðtÞþðKsþ
Xm

i ¼ 1

~e iki ~e
T
i ÞqsðtÞþ

Xm
i ¼ 1

êicih
T
i Dai

t qrðtÞ�
Xm

i ¼ 1

~e ikih
T
i qrðtÞ ¼ pðtÞ: (19)
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Eq. (19) represents a set of n equations with n+m unknowns which are elements of vectors qsðtÞ and qrðtÞ. Additional m

equations in the following form:

�ciD
ai
t qs,jþ1ðtÞþciD

ai
t viðtÞ�kiqs,jðtÞþkiviðtÞ ¼ 0, (20)

where i¼ 1,2,. . .,m are obtained from the equilibrium condition of the internal node of the Maxwell model of damper.
In the matrix notation, Eq. (20) for i¼ 1,2,. . .m may be rewritten in the form:

ciê
T
i Dai

t qsðtÞþcih
T
i Dai

t qrðtÞ�ki ~e
T
i qsðtÞþkih

T
i qrðtÞ ¼ 0 (21)

The final form of Eq. (21) is obtained by pre-multiplying Eq. (20) by hi and summing up all equations with respect to i.
As the result, we have

Xm

i ¼ 1

hiciê
T
i Dai

t qsðtÞþ
Xm

i ¼ 1

hicih
T
i Dai

t qrðtÞ�
Xm

i ¼ 1

hiki ~e
T
i qsðtÞþ

Xm

i ¼ 1

hikih
T
i qrðtÞ ¼ 0 (22)

Eqs. (19) and (22) constitute a set of equations from which the dynamic response of structure with Maxwell dampers
can be determined. It is a set of fractional differential equations. In this formulation each damper can have its own values of
parameters, different from others. For the case where all the fractional parameters are equal (ai ¼ a¼ const:) Eqs. (21) and
(22) are presented in Appendix A.

2.3. The equations of motion of structures expressed in the state space

In many cases it is very convenient to use the equation of motion expressed in the state space. When the Kelvin model is
used to describe dampers’ behaviour, then the vector of state variables and the vectors of their derivatives could be defined
as zðtÞ ¼ colðqsðtÞ,D

1
t qsðtÞÞ, D1

t zðtÞ ¼ colðD1
t qsðtÞ,D

2
t qsðtÞÞ, Dai

t zðtÞ ¼ colðDai
t qsðtÞ,D

aiþ1
t qsðtÞÞ.

Moreover, when the following additional matrix equation

MsD
1
t qsðtÞ�MsD

1
t qsðtÞ ¼ 0 (23)

is appended to Eq. (10) we get the set of Eqs. (10) and (23) which could be rewritten using the state variables defined
above. The resulting matrix equation is in the form:

AD1
t zðtÞþ

Xm
i ¼ 1

AiD
ai
t zðtÞþBzðtÞ ¼ ~pðtÞ, (24)

where

A¼
Cs Ms

Ms 0

" #
, Ai ¼

eicie
T
i 0

0 0

" #
, B¼

ðKsþ
Xm

i ¼ 1

eikie
T
i Þ 0

0 �Ms

2
64

3
75, ~pðtÞ ¼ pðtÞ

0

0
B@

1
CA: (25)

When all the fractional parameters are equal, i.e., ai ¼ a¼ const:, Eq. (24) has the form presented in Appendix B.
The equations of motion in the state space can also be derived for frames with Maxwell dampers. In this case, the vector

of state variables and vectors of state variables’ derivatives are defined as

zðtÞ ¼ colðqrðtÞ,qsðtÞ,D
1
t qsðtÞÞ, D1

t zðtÞ ¼ colðD1
t qrðtÞ,D

1
t qsðtÞ,D

2
t qsðtÞÞ

Dai
t zðtÞ ¼ colðDai

t qrðtÞ,D
ai
t qsðtÞ,D

aiþ1
t qsðtÞÞ: (26)

At this point Eqs. (22), (19) and (23) can be treated as a set of equations which can be written in the form of Eq. (24)
where

A¼

0 0 0

0 Cs Ms

0 Ms 0

2
64

3
75, Ai ¼

hicih
T
i hiciê

T
i 0

êicih
T
i êiciê

T
i 0

0 0 0

2
664

3
775, (27)

B¼

Xm
i ¼ 1

hikih
T
i �

Xm

i ¼ 1

hiki ~e
T
i 0

�
Xm

i ¼ 1

~e ikih
T
i Ksþ

Xm
i ¼ 1

~e iki ~e
T
i 0

0 0 �Ms

2
66666664

3
77777775

, ~pðtÞ ¼

0

pðtÞ

0

8><
>:

9>=
>;: (28)

For the fractional parameters ai ¼ a¼ const:, the above matrices are much simplified (Appendix B).
The above approach to the state space formulation is new. In comparison with previous ones, such as those given in

[20,26], matrices with huge dimensions were not required, which is the main advantage of the proposed formula.
Moreover, all matrices appearing in Eq. (24) are symmetrical. For example, when the ten storey frame with dampers at
each storey is considered the above formulas consist of matrices of dimensions 20�20. The same problem, solved using
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the methods presented by Chang in [20], leads to the matrices of dimensions 100�100 (a¼ 0:6). Moreover, the fractional
parameter a given more precisely raises the matrices’ dimension, i.e., a¼ 0:63 leads to 2000�2000 matrices.

3. The eigenvalue problem and the continuation method

Applying the Laplace transform, taking into account that ~pðtÞ ¼ 0 and (see [40]):

L½zðtÞ� ¼ Z, L½Dai
t zðtÞ� ¼ sai Z, L D1

t zðtÞ
� �

¼ sZ, (29)

the equation of motion (24) or (B1) can be written as

sAþ
Xm
i ¼ 1

sai AiþB

 !
Z¼ 0: (30)

Eq. (30) constitutes a nonlinear eigenproblem, which can be solved using the continuation method. Methods for the
solution of the eigenproblem appearing in the dynamic analysis of viscoelastic structures or systems where the damping
forces are modelled using the fractional derivative are considered in [19,41–44].

The continuation method, also termed as the path following method, is frequently used to solve nonlinear equations with
parameter, occurring in many problems of modern mechanics. The static analysis of geometrically or/and physically nonlinear
structures (see [36,37]) and the analysis of large-amplitude free and steady state vibrations [38–40] are examples of such
problems. A general description of the continuation method can be found, for example, in [45]. In the continuation method, the set
of nonlinear equations with one parameter, also called the main parameter, is usually considered. In this paper, Eq. (30) is viewed
as an equation with m main parameters which are all the fractional parameters of dampers. In the investigated case, without loss
of generality of consideration, the following linear dependence between the fractional parameters is introduced:

ai að Þ ¼ niaþki, (31)

where

ni ¼
ai�1

ap�1
, ki ¼

ap�ai

ap�1
(32)

In relations (31) and (32) ap is the chosen fractional parameter, say ap ¼ a1. In the context of the continuation method ai

is the final value of fractional parameter. Symbol ai is used to denote the current value of this parameter. Moreover, the
current value of the relative parameter ap is denoted by a. In this way the number of main parameters is reduced to one
main parameter a and Eq. (30) could be rewritten in the form:

g1 � sAþ
Xm

i ¼ 1

sniaþki AiþB

 !
Z¼ 0: (33)

A new space configuration, i.e., the space s, Z, different from the previously introduced state space, is now introduced. In this
new space the solution of the considered nonlinear equation with parameter could be shown as a curve (see [45] for details).
The first point on this curve is obtained for ai ¼ 1 because, in this case, Eq. (30) is the linear eigenvalue problem of the form:

s Aþ
Xm
i ¼ 1

AiþB

 !" #
Z¼ 0: (34)

From (34) a set of solutions denoted as sðjÞðai ¼ 1Þ, ZðjÞðai ¼ 1Þ, j¼ 1,2,:::,J are obtained. The number of solutions J depends
on the model of dampers, i.e., J¼ 2n and J¼ 2nþm for the Kelvin model and the Maxwell model, respectively. The
eigenvalues sðjÞ and eigenvectors ZðjÞ could be both, the complex conjugate or real numbers. This means that, in general, the
solutions to the investigated nonlinear eigenvalue problem could be shown as J curves in the space configuration. These
curves will be referred to as the response curves. Moreover, one single point on each curve is known.

At this point the authors are interested in determination of successive points on the chosen curve, say the jth curve.
Below, notation like srðaÞ, ZrðaÞ will be used to denote the coordinate of the rth point on this curve. In our problem we are
interested in determination of the considered response curve for a 2 ðap,1Þ and the most interesting solution is for a¼ ap.

To the set of equations (33), which consists of Jþ1 unknowns, i.e., the vector Z of dimension ðJ � 1Þ and the parameter s,
an additional condition in the following form is introduced:

g2 ¼
1
2 ZT Gs�a¼ 1

2ZT
Xm
i ¼ 1

ðniaþkiÞs
niaþki�1AiþA

" #
Z�a¼ 0, (35)

where a is of a given value. Eq. (35) may be considered as a way of normalization of the eigenvector Z. Moreover, in this
way, the symmetry of incremental equations which will be derived below is preserved.

Next, the authors will proceed to finding a solution to the eigenproblem (30) for a chosen value of a 2 ðap,1Þ, using the
incremental-iteration method. Based on the solution obtained for a certain value of parameter a¼ ar the solution is
searched for a new value of this parameter arþ1 ¼ arþDa, where Da is the assumed increment of parameter a. The
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approximate solution to a new value of parameter a obtained at the iteration step i will be denoted s ið Þ
rþ1 and Z ið Þ

rþ1. In the
first iteration step the solution obtained for ar is used, which means s 0ð Þ

rþ1 ¼ sr and Z 0ð Þ
rþ1 ¼ Zr .

The incremental equations of the Newton method, associated with Eqs. (33) and (35)), are in the following form:

GzdZþGsds¼�g1, GT
s dZþGsds¼�g2; (36)

where

g1 � g1ðs
ðiÞ
rþ1,ZðiÞrþ1,arþ1Þ, g2 ¼ g2ðs

ðiÞ
rþ1,ZðiÞrþ1,arþ1Þ,

Gz � Gzðs
ðiÞ
rþ1,ZðiÞrþ1,arþ1Þ ¼

@g1

@Z
¼
Xm

i ¼ 1

sniaþki AiþsAþB,

Gs �Gsðs
ðiÞ
rþ1,ZðiÞrþ1,arþ1Þ ¼

@g1

@s
¼

Xm

i ¼ 1

ðniaþkiÞs
niaþki�1AiþA

" #
Z,

Gs � Gsðs
ðiÞ
rþ1,ZðiÞrþ1,arþ1Þ ¼

@g2

@s
¼

1

2
ZT

Xm

i ¼ 1

ðniaþkiÞðniaþki�1Þsniaþki�2Ai

" #
Z: (37)

The new approximation of the solution is obtained after solving the set of equations (36) with respect to dZ and ds and
using the following formulae:

sðiþ1Þ
rþ1 ¼ sðiÞrþ1þds, Zðiþ1Þ

rþ1 ¼ ZðiÞrþ1þdZ (38)

The iteration process may be finished when

ds
�� ��re1 sðiþ1Þ

rþ1 ðarþ1Þ

��� ���, JdZJre2:Zðiþ1Þ
rþ1 ðarþ1Þ:, (39)

where e1 and e2 are the assumed accuracies of calculations.
Eqs. (36) and (37) are much simplified (Appendix C) when all the fractional parameters are equal, i.e., ai ¼ a¼ const:

The proposed method has good convergence properties. Usually, one incremental step and three or four iterations are
enough to reach a solution providing the final value of the fractional parameter ap. However, the proposed method has one
important drawback. The method fails in attempts to determine the response curves sðaÞ and ZðaÞ starting with real values
of sðaÞ for a¼ 1.

The computational method derived above enables determination of eigenvalues si. When the structural damping of a
system is sufficiently small and the Kelvin fractional model is used to describe dampers then all eigenvalues are complex
and conjugate. For the Maxwell fractional model of dampers some eigenvalues are real.

In this work, the authors propose to characterize the dynamic behaviour of frame with viscoelastic dampers by the
natural frequency oi and the non-dimensional damping parameter gi. Like in the case of viscous damping, the above-
mentioned properties are defined as

o2
i ¼ m

2
i þZ

2
i , gi ¼�mi=oi, (40)

where mi ¼ ReðsiÞ, Zi ¼ ImðsiÞ. These formulas refer to complex eigenvalues only.
In literature one may find different definitions of above-mentioned dynamic characteristics which, among others, can

be found in papers [34,42–44].

4. Frequency response functions

In this section, the authors focus on steady state harmonic responses of the structures governed by Eqs. (10) or (19) and
(22). For the harmonic external forces described by

pðtÞ ¼ P expðiltÞ, (41)

where l is the frequency of excitation, the displacement response of structure and the vector of state variables can be
expressed as

qsðtÞ ¼Q sðlÞexpðiltÞ, qrðtÞ ¼Q rðlÞexpðiltÞ, (42)

zðtÞ ¼ ZðlÞexpðiltÞ: (43)

Substituting (41) and (43) into the state equation (24) yields the input–output relationship using the frequency
response function ~HðlÞ

ZðlÞ ¼ ~HðlÞ ~P, (44)

where ~P ¼ colðP, 0Þ. The matrix frequency response function ~HðlÞ in terms of systems parameters is defined as

~HðlÞ ¼ ðilÞAþ
Xm
j ¼ 1

ðilÞaj AjþB

2
4

3
5
�1

: (45)
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Alternatively, after substituting relationships (41) and (A2.2) into Eqs. (10), written in terms of physical coordinates, for
the frame with Kelvin dampers the following equation is obtained:

Q sðlÞ ¼HðlÞ ~P, (46)

where the frequency response function is defined as

H¼ �l2Msþ ilCsþ
Xm
j ¼ 1

ðilÞaj ejcje
T
j þKsþKd

2
4

3
5�1

: (47)

In the case of a frame with Maxwell dampers, after substituting relationships (42) and (43) into Eqs. (19) and (22) the
following relationships are obtained:

DssðlÞQ sðlÞþDsrðlÞQ rðlÞ ¼ ~P, DrsðlÞQ sðlÞþDrrðlÞQ rðlÞ ¼ 0, (48)

where

DssðlÞ ¼ �l
2Msþ ilCsþ

Xm

j ¼ 1

ðilÞaj êjcjê
T
j þKsþKd

ss,

DsrðlÞ ¼
Xm

j ¼ 1

ðilÞaj êjcjh
T
j �
Xm

j ¼ 1

~ejkjh
T
j ,

DrsðlÞ ¼
Xm
j ¼ 1

ðilÞaj hjcjê
T
j �
Xm

j ¼ 1

hjkj ~e
T
j ,

DrrðlÞ ¼
Xm
j ¼ 1

ðilÞaj hjcjh
T
j þ

Xm

j ¼ 1

hjkjh
T
j : (49)

Finally, it is possible to write relationships

Q sðlÞ ¼HssðlÞP, Q rðlÞ ¼HrsðlÞP, (50)

where the frequency response functions HssðlÞ and HrsðlÞ could be written in the following form:

HssðlÞ ¼ ½DssðlÞ�DsrðlÞD�1
rr DrsðlÞ��1,

HrsðlÞ ¼�D�1
rr ðlÞDrsðlÞHssðlÞ ¼ �D�1

rr ðlÞDrsðlÞ½DssðlÞ�DsrðlÞD�1
rr DrsðlÞ��1: (51)

Element HijðlÞ of the matrix frequency response function is the displacement of the ith degree of freedom of the
structure subjected to the unit harmonically varying force at the jth degree of freedom.

5. Results of calculation

5.1. Example 1—Two-storey frame

A typical calculation was made for a two-storey frame with a damper mounted on the second storey (see Fig. 3).
The following data were chosen: the masses of the first and second storeys are m1 ¼ 21:6 Mg and m2 ¼ 17:28 Mg,

respectively; the height and rigidity of the columns are 3 m and EIc=11685 kNm2, the span and rigidity of the beam are 6 m
and EIb=47416 kNm2, respectively. The dampers data are: kd ¼ k11 where k11 is the element of Ks matrix,
cd ¼ 376:456 kNs=m, td ¼ cd=kd ¼ 0:02. The static condensation is used to eliminate the rotational nodal parameters.
qs,1

qs,2

2
m2

Ic

Ic

2
m2

2

m1

2

m1
Ib

Ib

�, kd, cd

Fig. 3. Diagram of a frame with a single damper.



0.0
fractional parameter

0.00

0.02

0.04

0.06

0.08

0.10

0.12

no
nd

im
en

si
on

al
 d

am
pi

ng
 ra

tio

0.2 0.4 0.6 0.8 1.0 1.2

Fig. 4. Non-dimensional damping ratio g1 versus fractional parameter a for frame with Kelvin damper (the dashed line with triangles) and for frame with

Maxwell damper (the solid line with crosses).

R. Lewandowski, Z. Pawlak / Journal of Sound and Vibration 330 (2011) 923–936 931
Changes of the first natural frequency of vibration due to changes of the fractional parameter a are minor. These
changes are less than 0.15% for the Kelvin model and less than 5.7% for the Maxwell model.

In the case where the frame with the Maxwell damper is considered, the solution to the nonlinear eigenproblem
provides five eigenvalus. For a¼ 1 we obtain one real eigenvalue and two pairs of complex, conjugate ones. The real
eigenvalue is associated with rheological properties of damper. Below, the natural frequency and the non-dimensional
damping ratio conjugate with complex eigenvalues are presented. The plot of the non-dimensional damping ratio versus
fractional parameter a is shown in Fig. 4 for the Kelvin model (the dashed line with triangles) and the Maxwell model (the
solid line with crosses), respectively. It is easy to observe that both models provide the non-dimensional damping ratio
rises when the fractional parameter increases.
5.2. Example 2—A ten-storey frame

In the second numerical test, the ten storey frame shown in Fig. 5 is investigated.
We assume the same value of mass ms ¼ 18 Mg on each storey and the same rigidity of columns on each storey

ks ¼ 51:60 MN=m. The viscous damping matrix of structure is assumed to be proportional to the mass and stiffness
matrices of frame structure as follows:

Cs ¼ b1Ksþb2Ms, (52)

where b1 ¼ 0:0093, b2 ¼ 0:1006. Two groups of dampers are installed between the selected storeys. Two dampers,
characterized by parameters k1 ¼ 40 MN=m and c1 ¼ 800 kNs=m are mounted on storeys 2 and 3. The second group of
dampers, which parameters are k2 ¼ 30 MN=m and c2 ¼ 600 kNs=m, occurs on three storeys from 6 to 8.

Four rheological models are applied to describe the dynamic behaviour of dampers which differ in the value of
fractional order a. The following models are chosen: (i) the Kelvin model (a1 ¼ a2 ¼ 1), (ii) the Maxwell model (a1 ¼ a2 ¼ 1),
(iii) the fractional Kelvin model (a1 ¼ 0:8, a2 ¼ 0:6), (iv) and the fractional Maxwell model (a1 ¼ 0:8, a2 ¼ 0:6).

Using the procedure developed in this work the eigenvalues are computed (Table 1) for various damper models, the
natural frequencies of structure (Table 2), and the values of non-dimensional damping ratio (Table 3). In each case,
what is obtained is ten pairs of conjugate complex eigenvalues representing the dynamic behaviour of frames and,
additionally, for the frame with classic Maxwell dampers, five negative real eigenvalues reflecting the creeping behaviour
in the dynamics.

One may see in Table 3 that the value of the non-dimensional damping ratio gi rises when the value of parameter ai

increases. The incremental-iteration method used here enables the nonlinear eigenproblem to be solved very fast. It is
noted that the presented method is very efficient for any value of parameter a increment. The iteration process converges
very quickly, around three iteration steps, which enable the solution to the nonlinear eigenproblem to be found very fast.
Other existing methods [41–43] which can be used to solve the considered nonlinear eigenvalue problem also require the
iterative procedure. However, the detailed comparison of numerical effectiveness of these methods is beyond the scope of
this paper.
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Fig. 5. Diagram of a 10-storey frame supplemented with two groups of dampers.

Table 1
Eigenvalues for various damper models.

Modal number Kelvin model Maxwell model

a1 ¼ a2 ¼ 1 a1 ¼ 0:8, a2 ¼ 0:6 a1 ¼ a2 ¼ 1 a1 ¼ 0:8, a2 ¼ 0:6

1 –0.21507i9.05373 –0.150507i9.06947 –0.313417i8.04753 –0.1998197 i8.06423

2 –1.66187i27.3432 –0.697987i27.4453 –2.03517i24.8743 – 0.8663457 i24.2741

3 –1.58457i41.0483 –0.983507i40.9677 –1.632587i40.2153 –1.135317 i39.4970

4 –7.260307i59.5285 –2.650527i60.1429 –4.33337i57.4251 –2.631267 i54.8554

5 –12.10427i78.9621 –4.533087i76.5824 –5.928167i73.6432 –4.512197 i69.2738

6 –8.31607i91.3798 –5.499807i89.9669 –6.567737i87.3558 –5.967717 i81.7537

7 –19.75127i90.5160 –9.401347i97.1531 –6.858657i94.8283 –5.996377 i91.3018

8 –32.56467i97.5756 –7.838977i110.907 –9.182007i106.718 –6.608497 i100.102

9 –60.98437i110.201 –11.63857i131.633 –13.27867i124.874 –9.646127 i109.115

10 –70.33517i105.891 –29.47177i134.166 –13.94267i126.266 –15.65997 i114.493

11 – – –29.3319 –

12 – – –32.5576 –

13 – – –33.9397 –

14 – – –36.4305 –

15 – – –41.3625 –
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The non-dimensional damping ratios are also determined using the modal strain method [46,47] to make a comparison
of the results obtained. Basing on the modal strain method the non-dimensional damping ratio gi for the considered
system can be defined as follows:

g¼ aT
s Kias

2aT
s Kras

, (53)

where Ki, Kr , as denote the imaginary and real part of the stiffness matrix and the modal shape, respectively. For a structure
equipped with dampers which differ in the value of fractional parameters ai, the above matrices are:

Kr ¼Ksþ
Xm

j ¼ 1

Kd,jþCd,joaj cos
ajp
2

� �
, Ki ¼oCsþ

Xm

j ¼ 1

Cd,joaj sin
ajp
2
: (54)



Table 3
The values of non-dimensional damping ratio gi.

Modal number Kelvin model Maxwell model

The incremental-iteration method Modal strain method

a1 ¼ a2 ¼ 1 a1 ¼ 0:8, a2 ¼ 0:6 a1 ¼ a2 ¼ 1 a1 ¼ 0:8, a2 ¼ 0:6 a1 ¼ a2 ¼ 1 a1 ¼ 0:8, a2 ¼ 0:6

1 0.023740 0.016575 0.023802 0.016630 0.038915 0.024770

2 0.060663 0.025423 0.061125 0.025676 0.081542 0.035667

3 0.038572 0.024000 0.040230 0.024297 0.040562 0.028732

4 0.121066 0.044027 0.122104 0.044416 0.075246 0.047912

5 0.151521 0.059088 0.157011 0.061873 0.080238 0.064997

6 0.090630 0.061017 0.162223 0.066233 0.074972 0.072802

7 0.213190 0.096318 0.190022 0.085053 0.072138 0.065535

8 0.316573 0.070504 0.277835 0.068962 0.085723 0.065874

9 0.484195 0.088072 0.483859 0.095964 0.080238 0.088060

10 0.553288 0.214550 0.526706 0.183351 0.109756 0.135514
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Fig. 6. The modulus of frequency response function H(5,5). The solid line – results for a1 ¼ a2 ¼ 0:2; the dashed line – results for a1 ¼ a2 ¼ 0:6; the dotted

line – results for a1 ¼ a2 ¼ 1:0.

Table 2
Natural frequencies of structure oi [rad/s].

Modal number Kelvin model Maxwell model

a1 ¼ a2 ¼ 1 a1 ¼ 0:8, a2 ¼ 0:6 a1 ¼ a2 ¼ 1 a1 ¼ 0:8, a2 ¼ 0:6

1 9.05628 9.08026 8.05363 8.06670

2 27.3937 27.4542 24.9574 24.2896

3 41.0788 40.9795 40.2485 39.5133

4 59.9696 60.2013 57.5884 54.9184

5 79.8844 76.7164 73.8814 69.4206

6 91.7575 90.1348 87.6024 81.9712

7 92.6459 97.6069 95.0760 91.4985

8 102.866 111.184 107.112 100.320

9 125.950 132.147 125.578 109.540

10 127.122 137.365 127.033 115.559
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when the fractional Kelvin model of dampers is used. The vector of modal shape as and the corresponding natural
frequency o can be obtained from the following eigenproblem:

ð ~Kr�o2MsÞas ¼ 0: (55)

where ~Kr ¼Ksþ
Pm

j ¼ 1

Kd,j
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The calculated non-dimensional damping ratios are shown in Table 3. The results obtained by both methods agree very
well. For a few first modes of vibration, the maximal differences are of the order of 1%. However, the differences were
observed to grow for higher modes of vibration and reached 14% for the mode of number ten, for which the non-
dimensional damping ratio has a very high value. This observation is in agreement with the remarks written in paper [46].

Finally, for the considered structure we investigate the frequency response functions. Using relationships (50) the
function H5,5ðlÞ was calculated taking into account various values of parameter ai, which describes the fractional Maxwell
damper (see Fig. 6).

The results obtained for a1 ¼ a2 ¼ 0:2 are presented in Fig. 6 by the solid line, for a1 ¼ a2 ¼ 0:6 by the dashed line, and
for a1 ¼ a2 ¼ 1:0 by the dotted line. Fig. 7 shows the frequency response function H10,5ðlÞ which expresses the last storey
displacements caused by force acting on the fifth storey. One may observe the increase of the non-dimensional damping
ratio when parameter a rises.

6. Concluding remarks

In this paper, the equations of motion for planar frames with VE dampers are derived. Two fractional, three-parameter
rheological models, i.e., the fractional Kelvin model and the fractional Maxwell model are used to describe the dynamic
behaviour of the considered systems. The equations of motion of the structure with dampers are written in terms of both
physical and state-space variables. The proposed approach in the state space formulation is new. This is the main
advantage of the proposed formulation, where matrices with huge dimensions are not required. The resulting matrix
equation of motion is a fractional differential equation.

Moreover, the paper is dedicated to the determination of the dynamics characteristics of the considered structures. The
nonlinear eigenvalue problem is formulated from which the dynamics characteristics of a system can be determined. The
continuation method is used to solve the above-mentioned nonlinear eigenvalue problem. In contrast to the method
presented previously, the dimension of the eigenvalue problem arising here is much smaller. Numerical results
demonstrate the effectiveness and applicability of the proposed approach. The influence of the key parameter, which
describes the order of the fractional derivative, on the dynamic parameters of frames with VE dampers, is also shown.
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Appendix A. The equation of motion in physical coordinates

When all the fractional parameters are equal, i.e., ai ¼ a¼ const:, the equation of motion for frame with the Kelvin
dampers (10) takes the form:

MsD
2
t qsðtÞþCsD

1
t qsðtÞþCdDa

t qsðtÞþðKsþKdÞqsðtÞ ¼ pðtÞ, (A1)
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where the damping matrix of the dampers and the matrix of dampers stiffness are defined as

Cd ¼
Xm

i ¼ 1

eicie
T
i , Kd ¼

Xm

i ¼ 1

eikie
T
i : (A2)

Eqs. (21) and (22) which describe the dynamic behaviour of frame with the Maxwell dampers are much simplified
when all the fractional parameters are equal, i.e., ai ¼ a¼ const: In such case the following can be written:

MsD
2
t qsðtÞþCsD

1
t qsðtÞþCd

ssD
a
t qsðtÞþðKsþKd

ssÞqsðtÞþCd
srDa

t qrðtÞ�Kd
srqrðtÞ ¼ pðtÞ, (A3)

Cd
rsD

a
t qsðtÞþCd

rrDa
t qrðtÞ�Kd

rsqsðtÞþKd
rrqrðtÞ ¼ 0, (A4)

where

Cd
ss ¼

Xm

i ¼ 1

êiciê
T
i , Cd

sr ¼
Xm

i ¼ 1

êicih
T
i , Cd

rs ¼
Xm

i ¼ 1

hiciê
T
i ¼ ðC

d
srÞ

T , (A5)

Cd
rr ¼

Xm

i ¼ 1

hicih
T
i , Kd

rs ¼
Xm

i ¼ 1

hiki ~e
T
i ¼ ðK

d
srÞ

T , Kd
rr ¼

Xm
i ¼ 1

hikih
T
i , (A6)

Kd
sr ¼

Xm

i ¼ 1

~eikih
T
i , Kd

ss ¼
Xm
i ¼ 1

~e iki ~e
T
i : (A7)

Appendix B. The equation of motion in state space

When all the fractional parameters are equal, i.e., ai ¼ a¼ const: the equation of motion in state space (24) takes the
form:

AD1
t zðtÞþÂ1Da

t zðtÞþBzðtÞ ¼ ~pðtÞ: (B1)

For the Kelvin model of dampers we have

Â1 ¼
Cd 0

0 0

� �
(B2)

For the Maxwell model of dampers the equation of motion has the form of Eq. (B1), where now:

Â1 ¼

Cd
rr Cd

rs 0

Cd
sr Cd

ss 0

0 0 0

2
64

3
75, B¼

Kd
rr �Kd

rs 0

�Kd
sr KsþKd

ss 0

0 0 �Ms

2
664

3
775: (B3)

Appendix C. The incremental equations of the Newton method

If fractional parameters ai are identical (i.e., ai ¼ a¼ const:) for all dampers, then the formulas associated with the
incremental equations of the Newton method (36) are in the following form:

g1 � sAþsaA1þB
� �

Z¼ 0,

g2 ¼
1
2 ZT Gs�a¼ 1

2ZT
ðasa�1A1þAÞZ�a¼ 0,

Gz �Gz sðiÞrþ1,ZðiÞrþ1,arþ1

	 

¼
@g1

@Z
¼ saA1þsAþB,

Gs � Gs sðiÞrþ1,ZðiÞrþ1,arþ1

	 

¼
@g1

@s
¼ asa�1A1þA
� �

Z,

Gs � Gs sðiÞrþ1,ZðiÞrþ1,arþ1

	 

¼
@g2

@s
¼

1

2
ZT aða�1Þsa�2A1

� �
Z: (C1)
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